Measurement of path length-dependent v_1 of high- p_T charged hadrons in Au+Au collisions by the STAR experiment

Sooraj Radhakrishnan (for the STAR Collaboration)

Lawrence Berkeley National Laboratory

In heavy-ion collisions, the thermalized matter is tilted in the reaction plane as a function of rapidity, while the production profile of partons from hard scatterings is symmetric in rapidity [1]. This leads to a rapidity-odd asymmetry in the medium path length traversed by the hard partons and results in a rapidity-odd directed flow (v_1) . Measurements of high- p_T hadron v_1 can provide valuable constraints on the initial longitudinal distribution of the fireball as well as the path length-dependent momentum loss of the partons. A similar effect, producing significantly large directed flow for heavy flavor mesons, was predicted [2] and has been observed for D^0 mesons (at 3σ significance) by STAR recently.

In this poster, we will present the first measurement of pseudorapidity and centrality dependence of the v_1 of high- p_T (> 5 GeV/c) charged hadrons in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 and 200 GeV. The v_1 of charged hadrons is found to change sign twice as a function of p_T and show large negative slope at high- p_T , similarly to D^0 mesons. The measurements will be compared to different model calculations and the sensitivity to different initial density distributions will be discussed.

- P. Bozek, I. Wyskiel. Phys. Rev. C. 81,054902 (2010), A. Adil, M. Gyulassy. Phys. Rev. C. 72,034907 (2005).
- [2] S. Chatterjee, P.Bozek. Phys. Rev. Lett. 120,192301 (2018)